'Chemical co-substrate rescue' of phytanoyl-CoA 2-hydroxylase mutants causing Refsum's Disease

Mridul Mukherji,*a* **Nadia J. Kershaw,***a* **Colin H. MacKinnon,***a* **Ian J. Clifton,***a* **Anthony S. Wierzbicki,***b* **Christopher J. Schofield****a* **and Matthew D. Lloyd****a*

a The Oxford Centre for Molecular Sciences and The Dyson Perrins Laboratory, South Parks Road, Oxford, UK OX1 3QY, E-mail: matthew.lloyd@chem.ox.ac.uk, christopher.schofield@chem.ox.ac.uk

b Department of Chemical Pathology, King's, Guy's & St. Thomas' Medical School, St. Thomas' Hospital Campus, Lambeth Palace Road, London, UK SE1 7EH

Received (in Cambridge, UK) 30th January 2001, Accepted 19th April 2001 First published as an Advance Article on the web 10th May 2001

The *in vitro* **catalytic activity of two clinically observed** mutants of phytanoyl-CoA 2-hydroxylase, an iron(II)/2-oxo**glutarate-dependent oxygenase causing Refsum's Disease, was partially rescued by the use of alternatives to the natural cosubstrate, 2-oxoglutarate; this is the first demonstration of 'chemical co-substrate rescue' of mutations to an enzyme causing human disease.**

Phytanic acid in the human diet is derived from the phytol sidechain of chlorophyll, but the presence of a 3-methyl group prevents its degradation *via* the fatty acid β -oxidation pathway. Instead, a preliminary pathway effects α -oxidation of phytanic acid, excising a methylene group to give pristanic acid.1,2 Within this pathway, hydroxylation of phytanoyl-CoA to 2-hydroxyphytanoyl-CoA is catalysed by phytanoyl-CoA 2-hydroxylase $\overline{(PAHX)}$,^{3,4} an iron(II) and 2-oxoglutarate-dependent oxygenase (Scheme 1).5 Mutations to PAHX cause *ca*. 45% of adult Refsum's Disease (ARD) with other cases being associated with a second locus.6

Two common point mutations in human PAHX, R275W and R275Q, are present at an allele frequency of 3/40 (7.5%) and 5/40 (12.5%), respectively, in Dutch/Scandanavian patients with ARD.^{3,7} Sequence analyses revealed that Arg-275 is conserved in all reported PAHX enzymes and closely related sequences. Analysis of the sequences in the light of crystal structures^{8,9} for two other 2-oxoglutarate oxygenases suggested that Arg-275 binds the 5-carboxylate of the co-substrate *via* an electrostatic interaction.8 We postulated that the PAHX R275Q and R275W mutants were inactive due to defective 2-oxoglutarate binding or utilisation, and that it may be possible to rescue their activity using alternative co-substrates.

The two clinically observed mutants of Arg-275 in human PAHX (R275Q and R275W)^{3,7} and a further mutant R275A, made for comparison, were constructed by site-directed muta-

Scheme 1 The role of phytanoyl-CoA 2-hydroxylase in the peroxisomal degradation of phytanic acid.

genesis. The desired proteins were expressed *via* standard techniques in recombinant *E. coli* and purified as mature (*i.e.* without their peroxisomal targeting sequences) enzymes to > 95% homogeneity (by SDS-PAGE analysis). Mutations were confirmed by DNA sequencing and ESI MS analyses. Analysis of the secondary structure by circular dichroism suggested that all mutants had a similar overall structure to the wild-type enzyme.

www.rsc.org/chemcomm Communication CHEMCOMM

င်

mmunicatio

www.rsc.org/chemcomm

Activity of the wild-type enzyme and mutants was assayed by conversion of phytanoyl-CoA to 2-hydroxyphytanoyl-CoA.10 Assays were performed (at least in triplicate) according to a modified version of a published procedure11 and included ATP to obtain maximum activity.12 The activity was further enhanced *ca*. two-fold by the use of tris(carboxyethyl)phosphine (TCEP) in place of the previously used dithiothreitol (DTT) .¹¹ Two concentrations of 2 -oxoacid (2 and 60 mM) were used in order to facilitate detection of low levels of activity. Assay mixtures for the analogues contained: 50 mM Tris-HCl, pH 7.5, 1 mM FeSO4, 50 mM synthetic (3*RS*,7*R*,11*R*) phytanoyl-CoA, 0.44 mM β -cyclodextrin, 100 µM TCEP, 10 mM ascorbate, 4 mM ATP and *ca*. 20 µg enzyme (2 mM 2-oxoacid) or 10 μ g enzyme (60 mM 2-oxoacid). Reactions were quenched with 250 mM EDTA after incubation for 60 min (2 mM 2-oxoacid) or 5 min (60 mM 2-oxoacid). Samples were centrifuged and analysed by HPLC using a Hypersil C_{18} column $(250 \times 4.6 \text{ mm})$ monitoring at 254 nm.¹¹

Using the natural co-substrate, 2-oxoglutarate, the activity of the two clinically observed mutants was $< 0.5\%$ of that of the wild-type enzyme (Table 1). A range of 2-oxoacids was tested in an attempt to restore the activity of the mutants. Homogentisate, 4-hydroxyphenylpyruvate, indole-3-pyruvate, 2-mercaptosuccinate all gave specific activities of < 0.2 nmol min⁻¹ mg^{-1} with wild-type enzyme and all mutants. The activity of the R275Q and R275W mutants was significantly 'rescued' compared to the wild-type activity with 2-oxoglutarate as a cosubstrate using certain 2-oxoacids at a concentration of 60 mM (Table 1). Optimum rescue of mutants with hydrophobic/ aliphatic residues in place of Arg-275 is achieved using 2-oxoacids with side-chains of 2–4 carbon atoms or equivalent length side-chains. Effective examples are in the use of 2-oxobutyrate with R275Q mutant (Table 1, entry 4) and 2-oxo-5-thiahexanoate with the R275W mutant (Table 1, entry 9). The latter case is striking because 2-oxo-5-thiahexanoate cannot be substituted for 2-oxoglutarate $(< 0.5\%)$ in assays with the wildtype enzyme. The dramatic change in co-substrate selectivity resulting from PAHX Arg-275 mutations may be useful for the clinical identification of these particular mutants using a modified assay with alternative 2-oxoacids.

Even higher levels of rescue were obtained in the case of the R275A mutant where most of the hydrophobic analogues tested (Table 1, entries 3–9), led to $22-28\%$ rescue at 60 mM. An exception was 2-oxooctanoic acid (Table 1, entry 10), which was inactive with the wild-type enzyme, and all mutants assayed, presumably due to its carbon chain being too large to **Table 1** Specific activities of (3*RS*,7*R*,11*R*)-phytanoyl-CoA hydroxylation as catalysed by mature recombinant wild-type and mutant PAHX enzymes in the presence of various 2-oxoacids (nmol min⁻¹ mg⁻¹ protein). Assays were carried out with 2 mM or 60 mM 2-oxoacid

be accommodated in the proper orientation in the active site. The R275A mutant was also less selective than the wild-type or other tested mutants, presumably due to a relaxation of steric and electrostatic constraints reflecting the presence of a small, hydrophobic and neutral side-chain.

2-Oxoacids are metabolically related to proteinogenic amino acids *via* transamination reactions. Several of the 2-oxoacids which rescue the activity of the clinically observed R275W and R275Q mutants are thus accessible *via in vivo* amino acids, *e.g*. 2-oxovalerate from valine and 2-oxo-5-thiahexanoate from methionine. Thus, certain forms of ARD might be treated *via* dietary supplements containing the appropriate amino acids. Maple syrup urine disease is caused by a deleterious accumulation of excess 2-oxacids, and is treated, in the reverse of this proposed therapy, by a diet low in branched-chain amino acids.13 Restoration of complete wild-type activity may not be required, as 5% of wild-type activity is apparently sufficient to effectively correct inherited homocystinuria14 with vitamin B6.

To our knowledge the only other example of the rescue of enzyme activity with a modified co-substrate has involved the elegant use of ATP analogues to study *in vivo* activity of

Scheme 2 'Chemical co-substrate rescue' of a PAHX mutant as exemplified for R275W. $R =$ hydrophobic/aliphatic group. Wild-type enzyme showing interaction of guanidino group of Arg-275 and 5-carboxylate of 2-oxoglutarate (above). Unfavourable interaction between aromatic sidechain of Trp-275 and 5-carboxylate of 2-oxoglutarate; rescue of activity *via* hydrophobic interactions in 2-oxoacid binding site (below). The relative arrangement of the iron ligands is that of deacetoxycephalosporin C synthase (DAOCS).⁸

kinases.15 The *in vitro* work that is reported here is the first demonstration of the 'chemical co-substrate rescue' of mutations in an enzyme (Scheme 2) implicated in a human disease. *In vivo* studies directed towards demonstrating the technique in cell lines are in progress.

Notes and references

- 1 D. Steinberg, in *'Refsum Disease', The metabolic and molecular basis of inherited metabolic disease*, ed. C. R. Scriver, A. L. Beaudet, W. S. Sly and D. Valle, New York, 1995.
- 2 N. M. Verhoeven, R. J. A. Wanders, B. T. Poll-The, J. M. Saudbubray and C. Jakobs, *J. Inherit. Metab. Dis.*, 1998, **21**, 697.
- 3 S. J. Mihalik, J. C. Morrell, D. Kim, K. A. Stackster, P. A. Watkins and S. J. Gould, *Nat. Genet.*, 1997, **17**, 185.
- 4 G. A. Jansen, R. Ofman, S. Ferdinandusse, L. IIjlst, A. O. Muisers, O. H. Skjeldal, O. Stokke, C. Jakobs, G. T. N. Besley, J. E. Wraith and R. J. A. Wanders, *Nature Genet.*, 1997, **17**, 190.
- 5 A. G. Prescott and M. D. Lloyd, *Nat. Prod. Rep.*, 2000, **17**, 367.
- 6 A. S. Wierzbicki, J. Mitchell, M. Lambert-Hammill, M. Hancock, J. Greenwood, M. C. Sidey, J. de Belleroche and F. B. Gibberd, *Eur. J. Hum. Genet.*, 2000, **8**, 649.
- 7 G. A. Jansen, E. M. Hogenhout, S. Ferdinandusse, H. R. Waterham, R. Ofman, C. Jakobs, O. H. Skjeldal and R. J. A. Wanders, *Hum. Mol. Gen.*, 2000, **9**, 1195.
- 8 K. Valegård, A. C. Terwisscha van Scheltinga, M. D. Lloyd, T. Hara, S. Ramaswamy, A. Perrakis, A. Thompson, H.-J. Lee, J. E. Baldwin, C. J. Schofield, J. Hajdu and I. Andersson, *Nature*, 1998, **394**, 805.
- 9 Z.-H. Zhang, J. Ren, J. K. Stammers, J. E. Baldwin, K. Harlos and C. J. Schofield, *Nat. Struct. Biol.*, 2000, **7**, 127.
- 10 M. Mukherji, N. J. Kershaw, I. J. Clifton, C. J. Schofield, A. S. Wierzbicki and M. D. Lloyd, *manuscript in preparation*.
- 11 S. J. Mihalik, A. M. Rainville and P. A. Watkins, *Eur. J. Biochem.*, 1995, **232**, 545.
- 12 K. Croes, V. Foulon, M. Casteels, P. P. Van Veldhoven and G. P. Mannaerts, *J. Lipid Res.*, 2000, **41**, 629.
- 13 S. E. Snyderman, P. M. Norton, E. Roitman and L. Holt, *Pediatrics*, 1964, **34**, 454.
- 14 J. P. Kraus, M. Janosik, V. Kozich, R. Mandall, V. Shih, M. P. Sperandeo, G. Sebastio, R. de Franchis, G. Andria, L. A. Kluijtmans, H. Blom, G. H. Boers, R. B. Gordon, P. Kamoun, M. Y. Tsai, W. D. Kruger, H. G. Koch, T. Ohura and M. Gaustadnes, *Hum. Mut.*, 1999, **13**, 362.
- 15 Y. Liu, K. Shah, F. Yang, L. Witucki and K. M. Shokat, *Chem. Biol.*, 1998, **5**, 91.